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Abstract. We have studied, in the framework of the two-band lattice model, the persistent
current in a one-dimensional mesoscopic semiconductor ring threaded by a fluxφ, taking into
consideration the electron–phonon interaction at absolute zero temperature. The current is a
continuous function and periodic inφ, with a flux quantumφ0, without jumps occurring when
each period is over. The interband coupling enhances the current while the electron–phonon
interaction suppresses it.

1. Introduction

Since the pioneering work of B̈uttiker et al [1, 2], the phenomenon of persistent currents
in mesoscopic rings in the presence of magnetic fields has attracted much interest from
physicists and experimentalists, who studied it by means of different theoretical models
and experimental methods [3–11]. In a normal-metal ring threaded by a magnetic flux, a
persistent current was thought to exist as long as the phase coherence of the electron was
preserved [1, 2, 4]. By using a gauge transformation, we can remove the vector potential
of the magnetic field in the Schrödinger equation with an additional modified boundary
conditionψn(x + L) = exp(2π iφ/φ0)ψn(x), whereφ0 = h/e is the flux quantum andL
is the circumference of the ring. The Bloch wave vectorkn is then determined by a flux-
dependent condition, i.e.,kn = (2π/L)(n + φ/φ0). Therefore the energy spectrum{εn} of
the electron is flux dependent and periodic inφ, with periodicityφ0. This implies that in
thermal equilibrium a currentj = ∂E/∂φ exists and is periodic in the flux.

Much of the research work has been based on the study of continuous models, without
consideration of the effects of the electron–phonon interaction. Zhouet al [12] and Wang and
Wang [13] studied the persistent current in 1D rings with a lattice model by using different
methods. They took the contribution of the electron–phonon interaction into consideration
and obtained nearly the same results on the persistent current. Their results show that the
oscillation amplitude of the current decreases at a rate governed by a Debye–Waller factor.

We note that almost all of the theoretical models are based on the single-band descrip-
tion, which is suitable only for the simple metallic case. Recently, Wang Yunet al [14]
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proposed a continuous two-band model theory for use in studying the persistent currents in
semiconductor rings which took into consideration the interband coupling on the basis of
the two-bandk · p theory formulation [15, 16]. They found that the persistent current is
periodic in the flux, with the same flux quantumφ0 as in the single-band model, and that
the interband coupling enhances the current. However, they did not consider the effects of
the electron–phonon interaction in their model. In this paper, the contribution of electron–
phonon interaction is taken into consideration in studying the persistent current (at absolute
zero temperature) in a 1D mesoscopic electron-doped semiconductor ring threaded by a flux
φ in the framework of the two-band lattice model.

The paper is organized as follows: in section 2 we present our theoretical model; in
section 3 we give some numerical results and analyses; and section 4 gives the conclusions
reached using our theory and results.

2. The theoretical model and results

We consider a 1D semiconductor ring with the circumferenceL = Na, wherea is the
lattice constant andN the number of lattice cells in the ring, lying in thexy-plane, threaded
by a magnetic fluxφ, which can be continuously varied. The Hamiltonian for the 1D
mesoscopic semiconductor ring can be constructed in such a way as to include the effect of
electron–phonon interaction, on the basis of the two-bandk ·p theory [14–16] in the lattice
model from [12, 13] as follows:

H =
N∑
l=1

(
ε1c
+
l cl − J1(c

+
l+1cl + c+l cl+1) p(c+l+1cl + c+l cl+1)

p(c+l+1cl + c+l cl+1) ε2c
+
l cl + J2(c

+
l+1cl + c+l cl+1)

)
+
∑
q

(
1 0
0 1

)
h̄ωqa

+
q aq +

∑
q,l

Mq

(
1 0
0 1

)
(eiqlaaq + e−iqlaa+q )c

+
l cl (1)

whereq is the wave vector andωq is the frequency of the phonon.ε1 = Ec + εc0 and
ε2 = Ev − εv0, whereEc andEv are the edges of the conduction band and valence band
respectively, andεc0 (εv0) andJ1 (J2), respectively, are the on-site energy and the hopping
integral of the conduction (valence) band, which are thought to be independent ofl for a
perfect lattice.p is a constant parameter, dependent upon the momentum matrix element
pcv as in thek · p scheme [14–16].c+l (cl) and a+q (aq) are the creation (annihilation)
operators for electrons and phonons respectively.Mq is the coefficient of coupling of the
electron and phonon.

Let the state vector|ψn〉 satisfy the Schr̈odinger equation

H |ψn〉 = En|ψn〉. (2)

To achieve consistency with the modified boundary condition of the wave function
8n(x + L) = exp(2π iφ/φ0)8n(x) [4, 10] in the magnetic field, we set [12, 13]

|ψn〉 = 1√
N

N∑
l=1

(
ρ1

ρ2

)
c+l e2π i(n+φ/φ0)l/N |Al〉 (3)

as an approximation for the small-polaron case as in equation (1). In equation (3),

|Al〉 = exp

[∑
q

(
−1

2
|αlq |2+ αlqa+q

)]
|0〉 (4)

is the coherent state of the phonon [13] and satisfies

aq |Al〉 = αlq |Al〉 (5)
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and |0〉 is the vacuum state of the electron and phonon. The operatorscl andαlq satisfy the
following periodic boundary conditions:

αl+Nq = αlq (6)

and

cl+N = cl. (7)

Putting the state vector|ψn〉 into Schr̈odinger equation (2), we get

En
1√
N

∑
l

(
ρ1

ρ2

)
c+l e2π i(n+φ/φ0)l/N |Al〉

= 1√
N

∑
l

(
ε1 0
0 ε2

)(
ρ1

ρ2

)
c+l e2π i(n+φ/φ0)l/N |Al〉

+ 1√
N

∑
l

(−J1 p

p J2

)(
ρ1

ρ2

)
c+l+1e2π i(n+φ/φ0)l/N |Al〉

+ 1√
N

∑
l

(−J1 p

p J2

)(
ρ1

ρ2

)
c+l−1e2π i(n+φ/φ0)l/N |Al〉

+ 1√
N

∑
ql

Mqα
l
qeiqla

(
ρ1

ρ2

)
c+l e2π i(n+φ/φ0)l/N |Al〉

+ 1√
N

∑
ql

Mqe−iqla

(
ρ1

ρ2

)
a+q c

+
l e2π i(n+φ/φ0)l/N |Al〉

+ 1√
N

∑
ql

h̄ωqα
l
q

(
ρ1

ρ2

)
a+q c

+
l e2π i(n+φ/φ0)l/N |Al〉. (8)

We see that if the free parametersαlq take the following form:

αlq = −
Mq

h̄ωq
e−iqla (9)

the two terms ofa+q c
+
l |Al〉 on the right-hand side of equation (8) disappear, and the result

will become simple. Multiplying equation (8) on both sides by a conjugate vector〈Al|cl ,
we get

En

(
ρ1

ρ2

)
=
(
ε1 0
0 ε2

)(
ρ1

ρ2

)
+
(−J1 p

p J2

)(
ρ1

ρ2

)
〈Al|Al−1〉e−i(2π/N)(n+φ/φ0)

−
(∑

q

M2
q

h̄ωq

)(
ρ1

ρ2

)
+
(−J1 p

p J2

)(
ρ1

ρ2

)
〈Al|Al+1〉e+i(2π/N(n+ φ/φ0).

(10)

Since the coherent states|Al〉 satisfy

〈Al|Al−1〉 = exp

{
−
∑
q

(
Mq

h̄ωq

)2

(1− eiqa)

}
(11)

and

〈Al|Al+1〉 = exp

{
−
∑
q

(
Mq

h̄ωq

)2

(1− e−iqa)

}
(12)
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equation (10) can be rewritten as

En

(
ρ1

ρ2

)
=
(
ε1 0
0 ε2

)(
ρ1

ρ2

)
+
(−J1 p

p J2

)(
ρ1

ρ2

)
2e−w cos

[
2π

N

(
n+ φ

φ0

)]
−
(∑

q

M2
q

h̄ωq

)(
ρ1

ρ2

)
(13)

where

w =
∑
q

(
Mq

h̄ωq

)2

(1− cosqa) (14)

and in deriving equation (13) we have used the properties of theq-distribution (−π/a 6
q < π/a), and the relationsM−q = Mq andω−q = ωq . In this case, we have∑

q

(
Mq

h̄ωq

)2

e±iqa =
∑
q

(
Mq

h̄ωq

)2

cosqa. (15)

Collecting the three terms on the right-hand side of equation (13) together, we obtain

En

(
ρ1

ρ2

)
=


ε1− 2J1e−wC2−

∑
q

(
M2
q

h̄ωq

)
2pe−wC2

2pe−wC2 ε2+ 2J2e−wC2−
∑
q

(
M2
q

h̄ωq

)

(
ρ1

ρ2

)

(16)

where here, and in equation (17) below,C2 stands for

cos
2π

N

(
n+ φ

φ0

)
.

Without loss of generality, we may neglect the difference between the effective mass for
electrons and light holes [14]. Then we haveεc0 = εv0 = ε0 and J1 = J2 = J . Solving
equation (16), we get the energy spectrum of the modified conduction band:

Ecn =
1

2
(Ec + Ev)+ 1

2

√
[εg + 2ε0− 4Je−wC2]2+ 16p2e−2w cos2

2π

N

(
n+ φ

φ0

)
(17)

whereεg = Ec −Ev is the energy gap between the conduction band and the valence band.
Now we consider an electron-doped semiconductor ring. Each cell has only one

conduction electron on average and the valence band is filled with electrons. According
to the Pauli exclusion principle, the energy for a fixedN -electron system at absolute zero
temperature is (setting(Ec + Ev)/2 to be the zero point of energy)

E = 1

2

m−1∑
n=−m

√[
εg + 2ε0− 4Je−w cos

2π

N

(
n+ φ

φ0

)]2

+ 16p2e−2w cos2
2π

N

(
n+ φ

φ0

)
(18)

for N = 2m, with m = 1, 2, . . ., and 06 φ/φ0 < 1; and

E = 1

2

m∑
n=−m

√[
εg + 2ε0− 4Je−w cos

2π

N

(
n+ φ

φ0

)]2

+ 16p2e−2w cos2
2π

N

(
n+ φ

φ0

)
(19)
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Figure 1. The energy of the electrons (a) and the persistent current (b) versus the magnetic
flux φ/φ0 for an even number of electrons (N = 10). The parametersεg = 1.5 eV and
p = 0.1εg, 0.2εg , and 0.4εg are represented by heavy-dotted, light-dotted and solid lines
respectively.

for N = 2m+ 1, with m = 0, 1, 2, . . ., and− 1
2 6 φ/φ0 <

1
2. Using the relation [1, 2, 17]

I = ∂E

∂φ
(20)

we can obtain the persistent current in the ring.
In order to review the properties of the total energy and persistent current of the

semiconductor ring threaded by a magnetic flux, we will perform some numerical analyses
in the next section.
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Figure 2. As figure 1, but withN = 11 andp = 0.5εg, 0.7εg , and 0.9εg .

3. Numerical results

In this section, we will give some numerical results to supply more information on the total
energy and persistent current for a 1D two-band mesoscopic semiconductor ring with a flux
penetrating it.

As in the last section, we neglect the difference between the effective masses of electrons
in the conduction band and light holes in the valence band [14]. We set the parameters
as follows: a = 10 Å, m = 0.1m0, α = 0.1, h̄ωq = h̄ω0 = 30 meV, andεg = 1.5 eV.
The energy (E) and the corresponding persistent current (I ) are plotted versus the external
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magnetic flux (φ/φ0) in figure 1 for theN = 10 system (withp = 0.1εg, 0.25εg, and 0.4εg),
and in figure 2 for theN = 11 system (withp = 0.5εg, 0.7εg, and 0.9εg). In figure 1 and
figure 2, the energy and persistent current have been respectively renormalized using the
factorsεg andI0 = εg/φ0. At the same time, the energies corresponding to the two larger
values ofp have been moved down by different amounts so that we can plot them in the
same figure.

From figure 1 and figure 2 we know that the energy and persistent current are periodic
functions of the flux, with the periodicity of the flux quantumφ0 as in the case of the single-
band model for the simple metallic ring. The energy increases as the interband coupling
(p) increases, and so does the oscillation magnitude of the persistent current. The persistent
current varies abruptly at certain flux points, which are different when the system contains
even or odd numbers of electrons. However, this is different from the discontinuous jumps
of the persistent current found in the continuous model [14]. The persistent current has one
peak for evenN and two peaks for oddN in one period of the flux.

Figure 3. The persistent current versus the magnetic fluxφ/φ0 for an even numbers of electrons
(N = 14), and the parametersεg = 2.0 eV andp = 0.4εg , with (dotted line) and without (solid
line) the contribution of electron–phonon interaction.

In figure 3 we have plotted the persistent current for the system with and without the
electron–phonon interaction. The inset in the figure shows the system energy in the two
cases. The effect of electron–phonon interaction is reflected in the factor e−w in equations
(18) and (19), wherew is determined by equation (14). Using the same parameters as
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above, we havew = 0.005. We note that the interaction lowers the energy and depresses
the persistent current in the system.

4. Conclusion

In this paper we have studied the persistent currents in the 1D mesoscopic semiconductor
rings threaded by an external magnetic fluxφ, in the framework of the two-band
lattice model at absolute zero temperature, where the contribution of the electron–phonon
interaction has been taken into consideration. From the numerical results, we found that the
persistent current of the system is continuous, and is periodic inφ, with a flux quantumφ0,
without jumps occurring when each period is over, no matter whether the system has even
or odd numbers of conduction electrons. This is very different from the situation in the
continuous model [14]. We also found that in the semiconductor ring the interband coupling
(p) enhances the current while the electron–phonon interaction suppresses the current.
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